Инженерные системы и сети в строительстве

Автоматизированный узел управления системой отопления. Автоматизированные тепловые пункты

Спецпредложение

Автоматизированные тепловые пункты

Автотматизированный тепловой пункт позволяет обеспечивать:

Автоматическое поддержание графика температуры теплоносителя, подаваемого в систему отопления, горячего водоснабжения, вентиляции и кондиционирования с учетом температуры наружного воздуха, времени суток и рабочего календаря, тепловой инерции стен здания вне зависимости от располагаемого напора тепловой сети.
- автоматический и ручной режимы управления входящими агрегатами и устройствами.
- автоматическое управление циркуляционными насосами.
- автоматический контроль и индикацию возникающих внештатных ситуаций.
- оптимизацию теплопотребления производственного, административного, общественного здания или частного жилого дома путем задания графика отопления, либо жилого здания с учетом бытовых тепловыделений.
- поддержание или сохранность работоспособности теплосистемы объекта при критических или аварийных режимах работы теплоснабжающей сети.

Основные технические характеристики:

Наименование параметра

Значение параметра

1. Давление в подающем трубопроводе ТС, МПа, не более
2. Давление в обратном трубопроводе ТС, МПа, не более
3. Температура теплоносителя в подающем трубопроводе ТС, °С
4. Температура теплоносителя в подающем трубопроводе ТС, °С
5. Напряжение питания

Трехфазная цепь переменного тока
(342-418) В (49-51) Гц

6. Потребляемая мощность, кВт, не более
7. Режим работы

Постоянный

8. Средняя наработка на отказ, ч
9. Средний срок службы, лет

Допустимые параметры объекта, обслуживаемого с использованием АТП

Наименование параметра

Значение параметра

1. Температурный график ГС:
- прямая магистраль, °С, не более
- обратная магистраль, °С, не менее


195
30

2. Температура точки излома температурного графика, °С, не менее:
- для закрытой системы теплоснабжения
- для открытой системы теплоснабжения
3. Располагаемый напор в точке присоединения АТП к ГС, м вод.ст., не менее
4. Минимальное давление в точке подключения к обратному трубопроводу ТС, м вод.ст., не менее

Высота водяного столба в верхней точке СО плюс 5 м вод.ст.

5. Температурный график СО, °С, не более
- подающий трубопровод
- обратный трубопровод


195
30

6. Расчетная тепловая мощность СО, м вод.ст., не более
7. Гидравлическое сопротивление СО, м вод.ст., не более

Устойчивость к внешним воздействующим факторам щита управления и регулирования в рабочем режиме: - температура от 5 до 50°С; - относительная влажность до 80% при 35°С и более низких температурах, без конденсации влаги; - атмосферное давление от 66,0 до 106,7 кПа.

Устойчивость к внешним воздействующим факторам остальных составляющих автоматизированного теплового пункта указана в эксплуатационной документации (ЭД) на соответствующее изделие.

Автоматизированные блочные тепловые пункты ЗАО «ТеплоКомплектМонтаж».

Введение

В настоящее время все больше внимания уделяется вопросам энергосбережения и оплаты энергоносителей. Особенно сложная ситуация наблюдается в системе оплаты тепла, когда потребитель оплачивает потери в не принадлежащих ему теплотрассах, которые достигают, а иногда и превышают, 20% от объема передаваемого тепла. Как следствие снижение в зимнее время температуры воздуха в жилых и производственных помещениях из-за недогрева воды в системах централизованного теплоснабжения и непрерывный рост финансовых затрат на теплоснабжение из-за повышения тарифов на тепловую энергию.

Перспективным подходом к разрешению сло­жившейся ситуации служит ввод в эксплуатацию ав­томатизированных тепловых пунктов с коммерческим узлом учета тепла, который отражает фактическое потребление тепловой энергии потребителем и по­зволяет отслеживать текущее и суммарное потребление тепла за заданный промежуток времени.

Целевая аудитория, решения:

Ввод в эксплуатацию автоматизированных тепловых пунктов с коммерческим узлом учета тепла позволяет решать следующие задачи:

АО «Энерго»:

  1. повышенная надежность работы оборудования, как следствие снижение аварий и средств на их устранение;
  2. точность регулировки теплосети;
  3. снижение затрат на водоподготовку;
  4. уменьшение ремонтных участков;
  5. высокая степень диспетчеризации и архивирования.

ЖКХ, муниципальное управляющее предприятие (МУП), управляющая компания (УК):

  • отсутствие необходимости постоянного сантехнического и операторского вмешательства в рабо­ту теплового пункта;
  • уменьшение обслуживающего персонала;
  • плата за реально потребленную тепловую энергию без потерь;
  • снижение потерь на подпитку системы;
  • высвобождение свободных площадей;
  • долговечность и высокая ремонтопригодность;
  • комфорт и легкость управления тепловой нагрузкой. Проектные организации:
  • строгое соответствие техническому заданию;
  • широкий выбор схемных решений;
  • высокая степень автоматизации;
  • большой выбор комплектации тепловых пунктов инженерным оборудованием;
  • высокая энергоэффективность. Промышленные предприятия:
  • высокая степень резервирования, особенно важна при непрерывных технологических процессах;
  • учет и точное соблюдение высокотехнологичных процессов;
  • возможность использования конденсата при наличии технологического пара;
  • регулирование температуры по цехам;
  • регулируемый отбор горячей воды и пара;
  • снижение подпитки и т.д.

Описание

Тепловые пункты подразделяются на:

  1. индивидуальные тепловые пункты (ИТП), служащие для присоединения систем отопления, вен­тиляции, горячего водоснабжения и технологических теплоиспользующих установок одного зда­ния или его части;
  2. центральные тепловые пункты (ЦТП) выполняющие те же функции что и ИТП для двух зданий или более.

Одним из приоритетных направлений деятельности компании ЗАО «ТеплоКомплектМонтаж» является изготовление блочных автоматизированных тепловых пунктов с применением современных технологий, оборудования и материалов.

Все более широкое применение находят тепловые пункты, изготавливаемые на единой раме в модульном исполнении высокой заводской готовности называемые блочными, далее БТП. БТП представляют собой законченное заводское изделие, предназначенное для передачи тепловой энергии от ТЭЦ или котельной к системе отопления, вентиляции и горячего водоснабжения. В состав БТП входит следующее оборудование: теплообменники, контроллер (щит электроуправле­ния), регуляторы прямого действия, управляющие клапаны с электроприводом, насосы, кон­трольно-измерительные приборы (КИП), запорная арматура и др. КИП и датчики обеспечивают измерение и контроль параметров теплоносителя и выдают сигналы на контроллер о выходе па­раметров за пределы допустимых значений. Контроллер позволяет управлять следующими сис­темами БТП в автоматическом и в ручном режиме:

Регулирования расхода, температуры и давления теплоносителя из тепловой сети согласно техническим условиям теплоснабжения;

Регулирования температуры теплоносителя, подаваемого в систему отопления, с учетом температуры наружного воздуха, времени суток и рабочего дня;

Подогрева воды на ГВС и поддержания температуры в пределах санитарных норм;

Защиты контуров системы отопления и ГВС от опорожнения при плановых остановах на ре монт или авариях в сетях;

Аккумулирования воды ГВС, позволяющей компенсировать пик потребления в часы макси­мальной нагрузки;

  1. частотного регулирования привода насосами и защиты от «сухого хода»;
  2. контроля, оповещения и архивирования нештатных ситуаций и др.

Исполнение БТП варьируется в зависимости от применяемых в каждом отдельном случае схем присоединения систем теплопотребления, типа системы теплоснабжения, а также конкрет­ных технических условий проекта и пожеланий заказчика.

Схемы присоединений БТП к тепловым сетям

На рис. 1-3 представлены наиболее распространенные схемы присоединения тепловых пунк­тов к тепловым сетям.






Применение кожухотрубных или пластинчатых теплообменников в БТП?

В тепловых пунктах большинства зданий, как правило, установлены кожухотрубные теплооб­менники и гидравлические регуляторы прямого действия. В большинстве случаев, это оборудова­ние выработало свой ресурс, а также функционирует в режимах не соответствующих расчетным. Последнее обстоятельство вызвано тем, что фактические тепловые нагрузки в настоящее время поддерживаются на уровне существенно ниже проектного. Регулирующая аппаратура при значи­тельных отклонениях от расчетного режима своих функций не выполняет.

При реконструкции систем теплоснабжения, рекомендуется применять современное оборудо­вание, отличающееся компактностью, предусматривающее работу в полностью автоматическом режиме и обеспечивающее экономию до 30% энергии, по сравнению с оборудованием, применяв­шимся в 60-70 гг. В современных тепловых пунктах обычно используется независимая схема под­ключения систем отопления и горячего водоснабжения, выполненная на базе пластинчатых теп­лообменников. Для управления тепловыми процессами используются электронные регуляторы и специализированные контроллеры. Современные пластинчатые теплообменники в несколько раз легче и меньше, чем кожухотрубные соответствующей мощности. Компактность и малый вес пла­стинчатых теплообменников значительно облегчают монтаж, обслуживание и текущий ремонт оборудования теплового пункта.



Рекомендации по подбору кожухотрубных и пластинчатых теплообменников приведены в СП 41-101-95. Проектирование тепловых пунктов. В основе расчета пластинчатых теплообменников лежит система критериальных уравнений. Однако, прежде чем приступить к расчету теплообменника, необходимо рассчитать оптимальное распределение нагрузки ГВС между ступенями подогревателей и температурный режим каждой ступени с учетом метода регулирования отпуска тепла от теплоисточника и схем присоединения подогревателей ГВС.

Компания ЗАО «ТеплоКомплектМонтаж» имеет собственную апробированную программу теплового и гидравлического расчета, позволяющую подбирать пластинчатые паяные и разборные теплообменники Funke, которые полностью удовлетворяют требования заказчика.

БТП производства ЗАО «ТеплоКомплектМонтаж»

Основу БТП ЗАО «ТеплоКомплектМонтаж» составляют разборные пластинчатые теплообменники Funke, которые отлично зарекомендовали себя в жестких российских условиях. Они надежны, просты в обслуживании и долговечны. В качестве узла коммерческого учета тепла используются теплосчетчики, имеющие интерфейсный выход на верхний уровень управления и позволяющие считывать потребленное количество теплоты. Для поддержания заданной температуры в системе горячего водоснабжения, а также регулирования температуры теплоносителя в системе отопления применяется двухконтурный регулятор. Управление работой насосов, сбор данных с теплосчетчика, управление регулятором, контроль за общим состоянием БТП, связь с верхним уровнем управления (диспетчеризация) берет на себя контроллер, который совместим с персональным компьютером.

Регулятор имеет два независимых контура регулирования температуры теплоносителей. Один обеспечивает регулирование температуры в системе отопления в зависимости от графика, учитывающего температуру наружного воздуха, время суток, день недели и др. Другой поддер­живает установленную температуру в системе горячего водоснабжения. Работать с прибором можно как локально, используя встроенную клавиатуру и панель индикации, так и дистанционно по интерфейсной линии связи.

Контроллер имеет несколько дискретных входов и выходов. На дискретные входы подаются сигналы от датчиков по работе насосов, проникновению в помещение бТп, по пожару, затопле­нию и т.п. Вся эта информация доставляется на верхний диспетчерский уровень. Через дискрет­ные выходы контроллера осуществляется управление работой насосов и регуляторов по любым алгоритмам пользователя, задаваемых на этапе проектирования. Имеется возможность менять данные алгоритмы с верхнего уровня управления.

Контроллер может быть запрограммирован для работы с теплосчетчиком, выдавая данные о теплопотреблении в диспетчерский пункт. Через него же осуществляется связь с регулятором. Все приборы и коммуникационное оборудование монтируются в небольшом шкафу управления. Его размещение определяется на этапе проектирования.

В подавляющем большинстве случаев, при реконструкции старых систем теплоснабжения и создании новых, целесообразно применять именно БТП. БТП, будучи собраны и испытаны в заво­дских условиях, отличаются надежностью. Монтаж оборудования упрощается и удешевляется, что, в конечном счете, снижает полную стоимость реконструкции или нового строительства. Каж­дый проект БТП ЗАО «ТеплоКомплектМонтаж» является индивидуальным и учитывает все особенности теплового пункта заказчика: структуру теплового потребления, гидравлическое сопротивление, схемные решения тепловых пунктов, допустимые потери давления в теплообменниках, размеры помещения, качество водопроводной воды и многое другое.

Виды деятельности ЗАО «ТеплоКомплектМонтаж» в области БТП

ЗАО «ТеплоКомплектМонтаж» выполняет следующие виды работ в области БТП:

  1. составление технического задания на проект БТП;
  2. проектирование БТП;
  3. согласование технических решений по проектам БТП;
  4. инженерная поддержка и сопровождение проекта;
  5. подбор оптимального варианта оборудования и автоматизации БТП, с учетом всех требований заказчика;
  6. монтаж БТП;
  7. проведение пусконаладочных работ;
  8. сдача теплового пункта в эксплуатацию;
  9. гарантийное и послегарантийное обслуживание теплового пункта.

ЗАО «ТеплоКомплектМонтаж» успешно разрабатывает энергоэффективные системы теплоснабжения, инженерные системы, а также занимается проектированием, монтажом, реконструкцией, автоматизацией, проводит гарантийное и послегарантийное обслуживание БТП. Гибкая система скидок и широкий выбор комплектующих выгодно отличают БТП ЗАО «ТеплоКомплектМонтаж» от других. БТП ЗАО «ТеплоКомплектМонтаж» - это путь снижения затрат на энергоносители и обеспечение максимального комфорта.

С уважением, ЗАО
«ТеплоКомплектМонтаж»

Доля расходов на отопление является преобладающей в коммунальных платежах на всей территории нашей страны. При этом в северных районах, а также там, где в качестве топлива используется привозной мазут, тепловая энергия стоит особенно дорого. По этой причине вопрос экономного потребления и разумного расходования тепловой энергии является на сегодняшний день одним из самых актуальных.
Как известно, экономия начинается с учета. Сегодня практически повсеместно установлены счетчики тепловой энергии, поступающей в многоквартирный дом. Статистические данные свидетельствуют, что эта простая мера позволила сократить расходы на отопление на 20, а порой и на 30%. Но этого недостаточно, нужно двигаться дальше и вектор этого движения должен быть направлен в сторону поквартирного учета тепла и снижения потребления энергии в зависимости от уменьшения потребностей в ней.
Для этого потребуется провести реконструкцию элеваторного ввода и установить узел управления системой обеспечения тепла с автоматическим регулированием его работы в зависимости от температуры наружного воздуха. Также необходима установка насосов с частотным регулированием их работы. Наиболее эффективной система будет при установке на каждый радиатор отопления датчика регулировки температуры и счетчика учета потребления тепловой энергии.
Разумеется, для этого потребуются денежные средства, которые, по предварительным расчетам, должны окупиться в течение двух лет эксплуатации системы. Можно воспользоваться средствами из федеральной программы повышения эффективности использования энергетических ресурсов, взять кредит и погасить его за счет ежемесячных поступлений денег от жильцов, выделив отдельно графу расходов на реконструкцию системы отопления. Можно просто "скинуться" и тем самым прекратить выбрасывать собственные деньги в окружающую среду вместе с нерационально используемой тепловой энергией.
Главное, это понять, что существующая сегодня система отопления, особенно в период межсезонья, подобно костру, разведенному на балконе: греет, только не то, что нужно.

Идеальный вариант
Идеальным вариантом отопительной системы для потребителя является тепловая сеть, автоматически поддерживающая заданный температурный режим в каждой комнате. При этом для жильцов мотивацией ее установки и использования должны стать не только комфортные условия проживания (регулировать температуру можно просто, открыв балконную дверь или окно на улицу), но и снижение платы за отопление.
Для этого нужна поквартирная система учета потребления тепловой энергии. Сбытовые компании настаивают, что в нашей стране с ее традиционной вертикальной разводкой системы отопления, установить счетчик тепла на каждую квартиру невозможно, но при этом упускается из виду (или просто нет желания это видеть и принимать во внимание), что счетчики тепла можно установить на каждый радиатор отопления, при этом не меняя двухтрубную или однотрубную вертикальную разводку тепла на горизонтальную.
При расчете за тепло достаточно суммировать показания всех счетчиков. С этим справится даже ученик начальной школы.
Индивидуальный учет тепловой энергии позволит осознанно экономить тепло, прекращаю его подачу в те помещения, где временно никто не живет или просто предпочитая находиться в прохладной комнате. Для этого можно перекрывать краны, установленные на каждом радиаторе.
Но есть и другой способ регулирования расхода тепла: использование радиаторного терморегулятора, состоящего из клапана и термостатической головки. Принцип действия системы прост: движением врезанного в трубу клапана, управляет термостатическая головка, реагирующая на изменение температуры в помещении: жарко, клапан перекрывает трубу, холодно, наоборот, открывает. При этом с помощью ручного регулирования можно настроить устройство по своему желанию: любите, чтобы было жарко, поставьте максимальную температуру на регуляторе, которую хотите получить в помещении.
Есть терморегуляторы, с помощью которых можно регулировать температуру в помещении в зависимости от времени суток: днем дома никого нет, отопление можно выключить, вечером включить.
Казалось бы все просто: счетчики можно установить в каждой квартире, количество тепловой энергии можно увеличивать или уменьшать, а плату за отопление можно экономить. Но при этом упускается из виду система регулирования распределения тепловой энергии по всему дому, то есть традиционный элеваторный ввод.

Принцип работы гидроэлеватора
В гидроэлеватор подается теплоноситель из магистрального трубопровода. Его давление регулируется с помощью обычной задвижки. При этом температура сетевой воды столь высока, что подавать ее напрямую потребителям нельзя, поэтому сетевую воду в гидроэлеваторе смешивают с уже остывшей обраткой.
Если теплоноситель совершит цикл движения по отопительной системе и при этом не расходует запас тепловой энергии, что произойдет непременно при выключенных отопительных приборах, в элеватор поступит горячая вода из сети и горячая вода из обратного трубопровода.
Гидроэлеватор не имеет обратной связи с магистральным трубопроводом и не может уменьшать давление сетевой воды. В результате потребителям, у которых отопительные приборы не перекрыты и работают на полную мощь, будет направлена слишком горячая вода, что приведет к порче оборудования.
При этом прибор учета тепловой энергии уменьшение потребления тепла не зафиксирует, а сбытовая компания отметит перегрев и выставит штрафные санкции. Выходит, что все усилия по сокращению расходов на отопление предпринимались зря.

Что делать
Нужен тепловой пункт с автоматической системой регулирования подачи сетевой воды



1. Гидроэлеватор
2. Электрический привод
3. Система управления
4. Датчик температуры
5. Датчик температуры теплоносителя в подающем трубопроводе
6. Датчик температуры теплоносителя в обратном трубопроводе

В нем используется теплообменник, в котором смешивается сетевая вода и вода из магистрального трубопровода. В отопительную систему подается именно эта "смесь". Ее температура измеряется и при превышении допустимого значения перекрывается подача магистральной воды, что ведет к уменьшению расхода тепловой энергии.
В итоге потреблением тепловой энергии можно управлять.

Автоматизированный узел управления системы отопления является разновидностью индивидуального теплового пункта и предназначен для управления параметрами теплоносителя в системе отопления в зависимости от температуры наружного воздуха и условий эксплуатации зданий.

Узел состоит из корректирующего насоса, электронного регулятора температуры, поддерживающего заданный температурный график и регуляторов перепада давления и расхода. А конструктивно – это смонтированные на металлической опорной раме трубопроводные блоки, включающие насос, регулирующую арматуру, элементы электроприводов и автоматики, контрольно-измерительные приборы, фильтры, грязевики.

В автоматизированном узле управления системой отопления установлены регулирующие элементы фирмы «Danfoss», насос — фирмы «Grundfoss». Комплектация узлов управления производится с учетом рекомендаций специалистов фирмы «Danfoss», которые оказывают консультационные услуги при разработке данных узлов.

Узел работает следующим образом. При наступлении условий, когда температура в тепловой сети превышает требуемую, электронный регулятор включает насос, а тот добавляет в систему отопления столько охлажденного теплоносителя из обратного трубопровода, сколько необходимо для поддержания заданной температуры. Гидравлический регулятор воды в свою очередь прикрывается, уменьшая подачу сетевой воды.

Режим работы автоматизированного узла управления системой отопления в зимнее время круглосуточный, температура поддерживается в соответствии с температурным графиком с коррекцией по температуре обратной воды.

По желанию заказчика может быть предусмотрен режим снижения температуры в отапливаемых помещениях в ночное время, в выходные и праздничные дни, что дает значительную экономию.

Снижение температуры воздуха в жилых зданиях в ночное время на 2-3°С не ухудшает санитарно-гигиенические условия и в то же время дает экономию в размере 4-5%. В производственных и административно-общественных зданиях экономия теплоты за счет снижения температуры в нерабочее время достигается в еще большей степени. Температура в нерабочее время может поддерживаться на уровне 10-12 °С. Общая экономия тепла при автоматическом регулировании может составить до 25% годового расхода. В летний период автоматизированный узел не работает.

Завод производит выпуск автоматизированных узлов управления системы отопления , их монтаж, наладку, гарантийное и сервисное обслуживание.

Энергосбережение особенно актуально, т.к. именно при внедрении энергоэффективных мероприятий у потребителя достигается максимальная экономия.

Мы всегда открыты для участия в решении Ваших проблем, касающихся нашей тематики и готовы к сотрудничеству с Вами в любой форме, вплоть до выезда на место наших специалистов.



Похожие публикации