Инженерные системы и сети в строительстве

Что такое измерение сопротивления изоляции и почему это важно. Измерения сопротивления изоляции Допустимая погрешность измерения электрического сопротивления изоляции

Квартирую проводку нужно проверять по ее отдельным линиям после автоматов.Но вот измеренное сопротивление изоляции отдельной линии ни о чем не говорит.Ну больше оно 0.5 мегом (ток утечки 0.48 миллиампер) и что? Совершенно не ясно,что будет когда проводка с кабелями и проводами из винилового пластиката нагреется до предельной рабочей температуры в + 70 градусов Цельсия.Реально сопротивление линий обычно бывает в диапазоне 12 — 300 мегом.Например,2 розетки,сопротивление изоляции каждой из них — 20 мегом,подключили их параллельно к магистрали линии,получили сопротивление в 10 мегом.Вот так из параллельно подключенных розеток,выключателей,светильников и кабелей к ним и последовательно с ними включенной магистрали и получается общее сопротивление в 0.5 мегом.Если во всей этой схеме окажется последовательно включенный участок кабеля,например ВВГ,с сопротивлением изоляции при + 20 градусах Цельсия в 1 мегом,этого никто не заметит,а при + 70 градусах Цельсия,когда через этот участок кабеля пойдет номинальный рабочий ток,да еще в летнюю жару,сопротивление этого участка уже будет 500 ом,а ток утечки — 480 миллиампер и загорится этот участок вместе с квартирой. Так что мерить сопротивление изоляции отдельно взятой линии вместе с электроустановочными изделиями после окончания монтажа конечно нужно, но лишь для того,что бы в дальнейшем, при повторных проверках,иметь контрольную величину сопротивления изоляции линии,если при контрольной проверке величины сопротивления изоляции линии окажется,что произошло снижение сопротивления изоляции линии больше,чем на 10 %,то нужно проводить полную проверку всех частей схемы электропроводки линии отдельно.А величина сопротивления изоляции линии в 0.5 мегом говорит лишь о том,что какую бы мы по сложности линию после автомата не собрали,ее сопротивление изоляции не должно быть меньше 0.5 мегом.Поэтому при монтаже квартирной проводки нужно проводить проверку сопротивления изоляции ее отдельных участков еще в процессе самого монтажа.Ремонт в квартире закончен,начинаются работы по отделке помещений -покраска,оклейка обоями,настилка напольных покрытий.Вот это то самое время,когда еще можно что то переделать в проводке,поэтому именно в это время и нужно проверить сопротивление изоляции всех проводов и кабелей.Причем проверка должна производиться по нормативам завода — изготовителя и ГОСТ.При этом нужно знать длину каждого участка линии,марку кабеля и его сечение.Например,у кабеля ВВГ при температуре в + 20 градусов Цельсия сопротивление изоляции жилы на один километр длины жилы при сечении 1.5 миллиметра квадратного — 12 мегом,а при сечении жилы 2.5 и 4 миллиметра квадратного сопротивление изоляции жилы на один километр длины жилы -10 мегом.Если сопротивление изоляции жилы меньше расчетного -кабель лучше сразу заменить,то есть при известной длине линии не сложно вычислить сопротивление изоляции жилы,зная ее сечение.Ну а, проверив сопротивление изоляции каждого участка кабеля,можно и коробки паять.А после окончательной отделки уже ставить светильники,розетки и выключатели,проверив их сопротивление изоляции.А уже после окончательного монтажа,до установки ламп,проверить общее сопротивление всех линий и всей квартирной проводки в целом.Причем при проверках сопротивления изоляции можно одновременно и коэффициент абсорбции проверить и провести испытания изоляции мегомметром на 2500 ,после которого снова проверить сопротивление изоляции.А собрать всю схему квартирной электропроводки и потом измерять сопротивление изоляции отдельных линий это не правильно.

Измерение сопротивления электрической изоляции – наиболее частое измерение при проведении электротехнических работ. Основная цель данного вида измерений – определение пригодности к эксплуатации электрических проводников, электрических машин, электрических аппаратов и электрооборудования в целом.

Сопротивление изоляции зависит от различных факторов. Это и температура окружающей среды, и влажность воздуха, и материал изоляции и т.д. Единица измерения сопротивления – Ом. При замерах сопротивления изоляции величиной обычно является килоОм (1кОм) и мегаОм (1МОм).

Сопротивление изоляции чаще всего измеряют у электрических кабелей, электрической проводки, электродвигателей, автоматических выключателей, силовых трансформаторов, распределительных устройств. Основным прибором для замеров является мегаомметр (мегомметр). Мегаомметры бывают двух основных видов – стрелочные с ручным приводом и электронные с цифровым дисплеем.

В процессе измерений мегаомметр генерирует испытательное напряжение. Стандартные напряжения мегаомметров – 100В, 250В, 500В, 1000В, 2500В. Чаще всего используют мегаомметры на напряжение 1000В и 2500В, реже на 500В.

Проверка исправности мегаомметра

Перед выполнением замеров, необходимо проверить исправность используемого прибора. Для этого выполняется два контрольных замера. Первое измерение проводится при закороченных между собой проводах мегаомметра. В этом случае измеряемая величина должна быть равна нулю. Второе контрольное измерение выполняется при разомкнутых проводах. Измеряемая величина сопротивления должна стремиться к бесконечно большому значению.

Техника безопасности при проведении измерений

При замерах сопротивления изоляции необходимо соблюдать технику безопасности. Во-первых, пользоваться неисправным мегаомметром категорически запрещается. Во-вторых, перед измерением необходимо проверить индикатором или указателем отсутствие напряжения на электрическом кабеле, двигателе или электрооборудовании. При отсутствии напряжения снимается остаточный заряд путём кратковременного заземления тех частей кабеля, двигателя или электрооборудования, которые в рабочем режиме находились под напряжением. Действия по снятию электрического заряда следует также проводить и после каждого замера.

Измерение сопротивления изоляции силовых электрических кабелей и электропроводки

Изоляция электрических кабелей и электрических проводов проверяется сначала на заводе изготовителе, затем перед непосредственной прокладкой, ну и после окончания электромонтажных работ. Количество замеров зависит от количества жил кабеля или провода.

Силовые электрические кабели и провода бывают трёхжильными, четырёхжильными и пятижильными. Три жилы – это или фаза, ноль и провод заземления, или три фазы «A», «B», «C». Четыре жилы – это три фазы плюс ноль (провод заземления или комбинированная жила PEN). Пять жил – это три фазы, нулевой проводник и провод заземления.

Замеры сопротивления изоляции трёхжильного кабеля или провода выполняют следующим образом. Каждая из трёх жил проверяется по отношению к двум другим заземлённым жилам. В итоге получается три замера. Кроме того, можно проверять сопротивление сначала между каждыми двумя жилами, а затем между каждой жилой и «землёй». В этом случае получается шесть замеров.

В случае с четырёхжильным или пятижильным электрическим кабелем (проводом) методика замеров аналогична измерениям трёхжильного проводника, только количество замеров будет несколько больше.

Для того, чтобы измеряемое значение соответствовало действительности, замер выполняется в течение одной минуты. Величина сопротивления изоляции электрического проводника должна быть в пределах государственных норм. Обычно для низковольтных кабелей 220В или 380В она составляет 0,5МОм или 1МОм.

Для электродвигателей проверяется изоляция обмоток статора. В настоящее время наибольшее распространение получили трёхфазные электродвигатели с короткозамкнутым ротором на рабочее напряжение 380В.

У таких двигателей имеется три обмотки статора, которые соединяются между собой либо по схеме треугольника, либо по схеме звезды. Соединение выполняется или внутри корпуса двигателя, или в соединительной коробке двигателя, которая называется «борно». Т.к. в первом случае отсоединить обмотки друг от друга не представляется возможным, то измерение сводится к замеру изоляции всех трёх соединённых обмоток по отношению к корпусу двигателя. Во втором варианте обмотки можно отсоединить друг от друга, после чего выполняется проверка изоляции между обмотками, а также проверка изоляции каждой обмотки по отношению к металлическому корпусу двигателя. Каждый замер выполняется в течение одной минуты. Конечное значение величины должно также соответствовать государственным нормам.

На производстве очень часто применяются достаточно мощные высоковольтные электродвигатели. Замер сопротивления изоляции обмоток таких двигателей часто сводится к определению коэффициента абсорбции, т.е. к определению увлажнённости обмоток. Для этого фиксируется значение после 15 секунд измерения и после 60 секунд. Значение коэффициента абсорбции - это отношение сопротивления R60 к сопротивлению R15. Величина не должна быть менее 1,3.

Измерение сопротивления изоляции силовых трансформаторов

В настоящее время единственным устройством, преобразующим электрическое напряжение из одной величины в другую, является трансформатор. Практически ни одно производство не обходится без силовых питающих трансформаторов. Перед пуском в эксплуатацию каждый такой трансформатор должен пройти высоковольтные испытания. Перед тем, как будут произведены высоковольтные испытания, необходимо выполнить замеры сопротивления изоляции обмоток.

Т.к. у трансформатора есть первичная и вторичная обмотка (обмотки), то проверяется изоляция каждой обмотки по отношению к другой, которая на момент замера должна быть заземлена. Также выполняется замер между первичной и вторичной обмоткой.

Достаточно часто необходимо определить увлажнённость обмоток трансформатора. В таком случае также как и с высоковольтным двигателем, определяется коэффициент абсорбции.

ОБЩАЯ ЧАСТЬ

Данная методика предназначена для проведения испытаний электрических аппаратов, вторичных цепей и электропроводки напряжением до 1 кВ

В общий объем испытаний входят:

Измерение сопротивления изоляции.

Испытание повышенным напряжением промышленной частоты

Проверка действия максимальных, минимальных или независимых расцепителей автоматических выключателей.

Проверка релейной аппаратуры

Проверка правильности функционирования полностью собранных схем при различных значениях оперативного тока.

Проверка работы автоматических выключателей и контакторов при пониженном и номинальном напряжениях оперативного тока.

ТРЕБОВАНИЯ К ПОГРЕШНОСТИ ИЗМЕРЕНИЯ

Пределы допускаемой относительной погрешности инструментом и приборами при проведении испытании:

Относительная погрешность при измерении сопротивлении изоляции.определяемое мегоомметром ЭС0202/2 составляет от 0,5до15% в зависимости от выбранной шкалы измерения;

Относительная погрешность при испытании повышенным напряжением

составляет 10%.

Степень приближения замеренного значения к действительному определяется по формуле:

где Yhb-наиболыиая вероятность относительной погрешности

Yd - класс точности прибора

Ah - верхний предел измерений прибора

А - измеренная величина.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При выполнении испытании электрических аппаратов, вторичных цепей и электропроводки необходимо обеспечить выполнение следующего:

Испытания производится по распоряжению звеном из 2-х человек с квалификационной группой по электробезопасности не ниже 4 у одного и не ниже 3 у второго.

Испытание подачей повышенного напряжения производятся по наряду.

Испытания производит персонал, прошедший спецподготовку по данной методике и прошедший проверку знаний и имеющий опыт работы проведения испытаний в условиях действующей электроустановки

Подача повышенного напряжения производится только после удаления из установки других бригад, работающих на ней, установки ограждения, вывешивания предостерегающих плакатов и выставления наблюдающих.

После проведения испытаний кабельных и воздушных линий необходимо испытываемую жилу заземлить на 10-15 секунд для снятия остаточного заряда.

Заземление производить с помощью штанги и в диэлектрических перчатках.

УСЛОВИЯ ПРОВЕДЕНИЯ ИСПЫТАНИЙ.

При выполнении испытаний необходимо придерживаться следующих требований:

Сопротивление изоляции следует производить при температуре не ниже +5 С, кроме случаем, оговоренных специальными инструкциями;

Мегоомметр ЭСО 202/2 сохраняет свою работоспособность при температуре окружающей среды -40+40 С0;

Выполнение испытаний производится только в помещении или под навесом и только в светлое время суток.

ТРЕБОВАНИЯ К ПЕРСОНАЛУ

К выполнению проведения испытаний допускаются лица электротехнического персонала с группой допуска по электробезопасности не ниже IY, He моложе 18 лет. прошедших обучение в объеме ПУЭ, ПЭЭП, Межотраслевых правил по охране труда при эксплуатации электроустановок, данной методике, аттестованные комиссией, обеспеченные инструментом, защитными средствами и спецодеждой.

СРЕДСТВА ИЗМЕРЕНИЯ

При проведении испытаний применяются следующие средства измерения:

Мегоомметр ЭС0202/2 Технические да нные:

1. ОБЪЁМ ИСПЫТАНИЙ АППАРАТОВ НАПРЯЖЕНИЕМ ДО 1000 ВОЛЬТ.

Согласно ПУЭ, объем пуско-наладочных испытаний для аппаратов напряжением до 1000 В следующий:

1. Измерение сопротивления изоляции.

2. Испытание повышенным напряжением промышленной частоты

Таблица 1.1.

Количество операций при испытании контакторов и автоматов многократными включениями и отключениями

Величина испытательного напряжения изоляции аппаратов, их катушек и вторичных цепей со всеми присоединенными аппаратами принимается равной 1000 В Продолжительность приложения испытательного напряжения - 1 мин.

3. Проверка действия максимальных, минимальных или независимых

расцепи гелей автоматов с номинальным током 200 А и более. Пределы работы

расцепителей должны соответствовать заводским данным.

4. Проверка работы контакторов и автоматов при пониженном и

номинальном напряжениях оперативного тока. Величины напряжений и

количество операций при испытании контакторов и автоматов многократными

включениями и отключениями приведены в табл. 1.1.

Помимо испытаний, предусмотренных ПУЭ, в процессе пуско-иалалочпмх работ проводятся испытания, определяемые, конструкцией и назначением аппарата и условиями его работы, а также испытания для получения исходных данных. Методика этих испытаний рассматривается далее. Даны также рекомендации по проверке правильности выбора предохранителей и расцепителей автоматов.

2. ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ.

Сопротивление изоляции Rиз - важная характеристика состояния изоляции электрических машин и аппаратов, и их измерение производится при всех проверках состояния изоляции. Измерения сопротивления изоляции производится с помощью мегаомметра. Наиболее широко в настоящее время используются электронные мегаомметры типа Ф-4100/2 номинальным напряжением 500, 1000 и 2500 В как наиболее современные. Однако в наладочных организациях все еще широкое применение находят мегаомметры типа М-4100/5 с номинальным напряжением 100, 250, 500, 1000, 2500 В, выпуск которых прекращен. Погрешность прибора Ф-4102 не превышает ±2,5%, а прибора М-4100 - 1% длины рабочей часта шкалы. Питание Ф-4102 осуществляется от сети 127 - 220 В переменного тока или от внешнего источника постоянного тока напряжением 12 В. Питание М-4100 осуществляется от встроенного генератора, приводимого во вращение рукой. Номинальное напряжение выхода приборов М-4100 и ЭСО-202/2 обеспечивается при вращении рукоятки с частотой 120 об/мин, но сохраняет свое значение и при большей частоте благодаря центробежному регулятору.

Структурная схема прибора ЭСО-202/2 представлена на рисунке.

Рис. Структурная схема мегаомметра ЭСО-202/2

В случае, когда результат измерения может быть искажен поверхностными токами утечки, на изоляцию объекта измерения накладывают электрод, присоединяемый к зажиму Э (экран) для исключения возможности прохождения токов утечки через рамку логометра, используемого в приборах в качестве измерительного органа. При измерении сопротивления изоляции между жилами кабеля таким экраном может служить металлическая оболочка кабеля.

Перед началом измерения прибор проверяется замыканием зажимов З и Л накоротко. Стрелка при измерении согласно заводской инструкции должна устанавливаться против деления шкалы 0. После удаления закоротки стрелка прибора должна установиться против деления ¥.

Если эти требования не соблюдаются, прибором пользоваться нельзя и его следует ремонтировать. Перед измерением объект заземляют на 2 - 3 мин для снятия остаточных зарядов, которые могут повлиять на показание прибора.

После подготовки объекта и проверки мегаомметра производится измерение. При измерении абсолютного значения сопротивления изоляции аппарата (машины) Rиз токоведущую часть ее присоединяют специальными проводами с усиленной изоляцией (например, типа ПВЛ) к выводу Л мегаомметра. Вывод 3 и корпус или конструкции, относительно которых производится измерение сопротивления изоляции, надежно заземляются через общий контур заземления. Сопротивление изоляция Rиз определяется показанием стрелки мегаомметра, установившейся по истечении 60 с после подачи нормального напряжения (у мегаомметров М-4100 это имеет место при частоте вращения рукоятки 120 об/мин).

Рис. 2.1 Рис. 2.2 Рис. 2.3

Рис. 2.1. Схема измерения мегаомметром сопротивления изоляции 1 относительно земли.

Рис. 2.2. Схема измерения мегаомметром сопротивления изоляции 1 между

токопроводящими жилами (стержнями).

Рис 2.3. Схема измерения мегаомметром сопротивления изоляции 1 между

токо проводящими жилами при исключении влияния токов утечки.

Рис. 2.4. Щуп для измерения R из мегаомметром:

1 - ручка из изоляционного материала (эбонита, текстолита, стекла и т.п.):

2 - зажим для присоединения провода от зажима Л мегаомметра;

3 - металлическое лезвие щупа

При измерении коэффициента абсорбции Кабс рекомендуется для точности измерения сначала обеспечить на мегаомметре нормальное напряжение, а потом быстро приложить вывод к заранее зачищенному месту токоведущей части измеряемого объекта и только после этого начинать отсчет времени. Первое показание прибора фиксируется через 15 с после начала измерения, второе - через 60 с. За результат измерения принимается отношение обоих измерений.

Измерения удобно производить с помощью щупов (рис. 2.4.), легко изготовляемых в мастерских. При измерениях сопротивления изоляции и коэффициента абсорбции должны строго соблюдаться осторожность и все правила техники безопасности, так как напряжение мегаомметра опасно для жизни человека.

3. ИСПЫТАНИЕ ПОВЫШЕННЫМ НАПРЯЖЕНИЕМ ПРОМЫШЛЕННОЙ ЧАСТОТЫ.

Согласно ПУЭ, у всех аппаратов вторичных цепей и электропроводок напряжением до 1000 В должно быть измерено сопротивление изоляции и проведено испытание повышенным напряжением.

Допустимые минимальные величины сопротивления изоляции приведены в табл.3.1.

Таблица 3.1

Предельные величины сопротивления изоляции аппаратов, вторичных цепей и электропроводки напряжением до 1000 В.

Испытываемая изоляция Напряжениемегомметра, В Минимальное значение сопротивления изоляции, МОм Примечания
Катушки контакторов, магнитных пускателей и автоматов. Вторичные цепи управления, защиты, измерения и т. п.: шины постоянного тока и шины напряжения на щите управления (при отсоединенных цепях) каждое присоединение вторичных цепей и цепей питания приводов выключателей и разъединителей цепи управления, защиты и возбуждения машин постоянного тока напряжением 500 - 1100 В, присоединенные к цепям главного тока. Силовые в осветительные электропроводки Распределительные устройства, щиты и токопроводы. 500-1000 0.5 Производится со всеми присоединенными аппаратами (катушки приводов, контакторы, реле, приборы, вторичные обмотки трансформаторов тока и напряжения и т.д.)

Сопротивление изоляция при снятых

плавких вставках измеряется на участке

между смежными предохранителями или за

последними

предохранителями между любым проводом

и землей, а также между

двумя любыми проводами.

При намерении сопротивления в силовых

цепях должны быть отключены

электроприемники, а также аппараты,

приборы ч т. п.

При измерении сопротивления в

осветительных цепях лампы должны быть

вывинчены, а штепсельные розетки,

выключатели и групповые щитки

присоединены

Для каждой секции распределительного устройства

Величина испытательного напряжения промышленной частоты принята равной 1000 В. Продолжительность приложения испытательного напряжения - 1 мин.

Схема испытания изоляции приведена на рис. 3.1. Испытания проводятся в полностью собранной схеме. При большом числе разветвленных цепей для предотвращения перегрузки испытательного трансформатора емкостными токами испытания следует выполнять раздельно по участкам. Перед испытанием в схеме снимаются все заземления, отсоединяются вторичные обмотки трансформаторов напряжения, аккумуляторные батареи, а также вся аппаратура, изоляция которой не допускает испытания повышенным напряжением. Временные перемычки, которые необходимо поставить по условию объединения участков схемы, подвергаемых испытанию, должны отличаться от других проводов.

Рис.3.1. Схема испытания изоляции вторичных цепей повышенным напряжением переменного тока.

Во избежание повреждения в случае пробоя испытуемой изоляции при испытании шунтируются конденсаторы, полупроводниковые элементы, электронные лампы должны быть вынуты из панелек; при наличии в испытательной схеме приборов с обмотками напряжения и тока, изоляция между которыми рассчитана на испытательное напряжение 500 В, эти обмотки на время испытания должны быть соединены временными перемычками между собой и отсоединены от неиспытуемых цепей. При испытаниях шунтируют также катушки аппаратов с большой индуктивностью во избежание резонанса, который может появиться при определенной емкости кабелей. Изоляция вторичных цепей считается выдержавшей испытания, если при испытаниях не обнаружены скользящие разряды, пробои изоляции, резкие толчки тока и напряжения, а также если при повторной проверке мегомметром сопротивление изоляции не уменьшилось.

Если нет специальной испытательной аппаратуры, то в качестве испытательного трансформатора может быть использован трансформатор напряжения типа НОМ-3. Мощность испытательного трансформатора 200 - 300 ВА при напряжении 1000 В, как правило, достаточна. Ограничительное сопротивление принимается порядка 1000 Ом.

При отсутствии испытательной аппаратуры допускается, как исключение, замена испытания переменным напряжением 1000 В одноминутным измерением сопротивления изоляции мегомметром 2500 В.

4.1. АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ СЕРИИ A3100

В объем наладочных работ по выключателям серии A3100 входят проверка тепловых и электромагнитных расцепителей и испытание изоляции выключателей.

Уставки расцепителей автоматов серии A3100 не регулируются. После калибровки расцепителей на заводе-изготовителе их крышки опечатываются.

На месте установки автоматов проверяется соответствие фактических уставок расцепителей их номинальным данным для оценки пригодности автоматов для эксплуатации.

Начальные токи срабатывания расцепителей или тепловых элементов комбинированных расцепителей при нагрузке одновременно всех полюсов автомата из холодного состояния при температуре окружающей среды +25°С, а также время остывания теплового элемента приведены в табл. 4.1. Проверку тепловых элементов расцепителей автоматов рекомендуется проводить в такой последовательности.

1. Проверка тепловых элементов на срабатывание при пополюсной

нагрузке испытательным током, равным двух - или трехкратному номинальному

току расцепителя автомала.

Время срабатывания и остывания тепловых элементов автоматов Таблица 4.1.

2. Проверка характеристик тепловых элементов при одновременной нагрузке всех полюсов двухкратным (для автоматов A3160 и A3 ПО) и трехкратным током (для автоматов A3120, A3130 и A3140). Время срабатывания расцепителя должно находиться в пределах, указанных в табл. 4.2.

3. Проверка начального тока срабатывания автоматов, у которых при проверке двух - или трехкратным током время срабатывания не совпадает с данными табл. 4.2. Проверка электроманитных элементов производится испытательным тоном для каждого полюса автомата отдельно. При проверке электромагнитных расцепителей испытательный ток от нагрузочного устройства устанавливается на 30% ниже тока уставки для автоматов A3 ПО и на 15% ниже тока уставки для остальных автоматов. При этом токе автомат не должен отключаться. Затем испытательный ток повышают до отключения автомата. Ток срабатывания не должен превышать ток уставки больше чем на 30% для автоматов A3110 и на 15% - для остальных автоматов.

Электромагнитные элементы комбинированных расцепителей в соответствии с » рекомендациями завода-изготовителя следует проверять следующим образом.

Таблица 4.2

Характеристика тепловых элементов при одновременной нагрузке всех полюсов автомата двукратным (тип A3160 и A3110) и трехкратным током (тип A3120, A3130 и A3140)

Тип автомата Номинальный ток расщепителя, А Испытательный ток, А

При различной температуре окружающего воздуха, °С

Предельное время срабатывания при одновременной нагрузке всех полюсов испытательным током.сек Максимальное время нахождения автомата под испытательным током.сек
0 3 10 15 20 25 30 35 40
15 34 33 32 32 31 30 29 29 28 15-20 40
20 45 44 4 3 42 41 40 39 38 37 18-23 45
25 57 56 54 53 51 50 49 47 46 19-27 50
A3 1 60 30 67 66 64 63 62 60 59 57 55 25 - 35 70
40 90 S8 N6 84 82 80 78 76 74 35-45 90
50 114 112 109 106 103 100 97 94 91 58 - 78 150
15 37 35 34 33 32 30 29 27 25 19 - 27 50
20 48 46 44 43 42 40 38 37 35 27 - 37 70
25 59 57 55 54 52 50 48 4 7 4 5 35 - 4 5 90
30 " 74 71 62 66 63 60 57 54 50 55-65 130
40 96 91 89 86 83 80 77 74 70 50-80 160
A3 1 10 50 1 14 111 109 106 103 100 97 90 90 80 - 100 200
60 137 133 131 127 124 120 1 16 ИЗ 109 70 - 90 180
70 157 154 151 150 144 140 136 133 129 75-95 190
85 190 187 IS7 182 174 170 166 162 156 1 10 - 140 240
100 228 224 212 212 206 200 194 187 180 100 - 150 240
15 50 50 49 48 46 45 44 43 41 18-22 45
20 67 66 65 64 62 60 59 57 55 16-22 45
25 84 83 81 80 77 75 73 71 69 24 - 30 60
30 101 99 97 96 92 90 88 85 83 28 - 38 70
A3120 40 134 132 130 128 123 120 117 1 14 1 10 40 50 100
50 168 165 162 161 154 150 146 144 138 50-60 120
60 202 198 194 193 185 180 176 171 166 50 - 60 120
80 269 264 259 257 246 240 234 228 221 70 - 80 160
100 336 330 324 321 306 300 293 285 276 60 - 70 140
120 403 396 389 385 369 360 351 342 331 65 - 75 150
140 470 462 4 54 449 431 420 410 399 386 65 - 75 150
A3 1 30 170 571 561 551 546 523 510 497 485 469 68 - 78 150
200 672 660 64 8 642 615 600 585 570 552 78 - 88 170
250 840 825 810 803 769 750 731 713 690 60 - 70 140
300 1008 990 97 2 963 923 900 878 855 828 65 - 75 150
350 1 176 1 155 1 1 34 1 124 1076 1050 1024 998 966 65 - 75 150
A3 140 400 1344 1340 12% 1284 1230 1200 1 170 1140 1104 ■ 50 - 60 120
500 1680 1650 1620 1605 1538 1500 1463 1425 .1380 50-60 120
600 2016 1980 1944 1926 1845 1800 1755 1710 1656 65-75 150

К нагрузочному устройству подключают эквивалентное сопротивление, равное полному сопротивлению (суммарному сопротивлению теплового элемента, электромагнитного и коммутирующих контактов) одного полюса испытуемого автомата. Регулирующим устройством и амперметром, включаемым в цепь эквивалентного сопротивления, устанавливают ток на 30% ниже уставки для автомата типа A3110 и на 15% ниже - для прочих автоматов. Не изменяя величины установившегося испытательного тока, от нагрузочного устройства отключают эквивалентное сопротивление. Вместо него поочередно включают все полюсы автомата, при этом автомат не должен отключаться… После этого эквивалентное сопротивление вновь присоединяют к нагрузочному устройству и устанавливают величину испытательного тока на 30% выше тока уставки - для автоматов типа A3110 и на 15% - для прочих автоматов. Затем, не изменяя величины установившегося испытательного тока, отключают от нагрузочного устройства эквивалентное сопротивление и поочередно включают все полюсы автомата. В этом случае автомат отключается под действием электромагнитных элементов. Чтобы убедиться в этом после каждого отключения необходимо (пока не остыли тепловые элементы) попытаться включить автомат вручную. Если автомат включается нормально, значит, он был отключён от электромагнитного элемента. При срабатывании теплового элемента повторное включение автомата не происходит. Схемы испытания расцепителей автоматов приведены на рис. 4.1.

Схемы проверки тепловых и электромагнитных расцепителей автоматов серии А3100:

а - включение одной фазы автомата, б - включение трех фаз при одновременной нагрузке, всех полюсов автомата испытательным током; НТ- нагрузочный трансформатор; ТР - тепловой расцепитель; ЭР - электромагнитный расцепитель; А - автомат; П- перемычка.

Дистанционный расцепитель автомата должен чётко срабатывать в пределах 75 - 105% номинального напряжения.

При температуре окружающего воздуха +40°С и относительной влажности 60 - 80% сопротивление изоляции выключателя в холодном состоянии должно быть не менее 10 МОм, а в прогретом (номинальным током расцепителя) - не менее 5 МОм.

4.2. АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ СЕРИИ АП-50

Проверка расцепителей автоматов АП-50 проводится аналогично описанному выше. Токи срабатывания электромагнитных расцепителей автоматов АП-50 приведены в табл. 4.4, защитные характеристики автоматов - на рис. 4.2.

Пределы регулировки номинального тока уставки тепловых расцепителей связаны с номинальными токами уставки следующим образом:

Таблица 4.3

Тепловые расцепители не срабатывают в течение 1 ч при токе нагрузки, составляющем 1,1 тока уставки, срабатывают не более чем через 30 мин при токе нагрузки, составляющем 1,35 тока уставки, и за 1 - 10 сек, если ток срабатывания расцепителя составляет не более 2 мин.

Сопротивление изоляции автомата при относительной влажности среды 75% должно быть в холодном состоянии не менее 20 МОм, в прогретом номинальным током - не менее 6 МОм.

4.3. АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛЯ СЕРИИ АВМ

Проверка и настройка автоматов серии АВМ производится в следующем объеме:

1) внешний осмотр;

2) проверка растворов, провалов и нажатий контактов;

3) проверка четкости работы механизма свободного расцепления;

4) испытание действия электромеханического привода и схемы управления;

5) проверка действия независимого расцепителя и расцепителя минимального

напряжения;

6) проверка характеристик максимальных расцепителей;

7) испытание изоляции.

При внешнем осмотре проверяется целость деталей, состояние главных и блокировочных контактов и дугогасительных камер, а также соответствие проекту автомата и его расцепителей.

Величину нажатия контактов определяют пружинным динамометром. Для этого при полностью включенном автомате измеряют усилие, необходимое для того, чтобы оттянуть контакт до освобождения проложенной между контактами полоски папиросной бумаги или до погасания включенной последовательно с контактами АВМ сигнальной лампы. Направление усилия должно быть перпендикулярно плоскости касания контактов. Начальное нажатие контактов определяют при полностью отключенном аппарате описанным выше образом, но бумажная полоска закладывается между контактом и упором.

ВКЛ.

Принципиальная схема управления автоматом серии АВМ с электромеханическим приводом

Автоматы серии АВМ выпускаются со следующими исполнениями максимальнотоковой защиты:

неселективные - с максимальными расцепителями с обратнозависимой от тока выдержкой времени при перегрузках и мгновенным срабатыванием при токах короткого замыкания;

селективные - с максимальными расцепителями с обратнозависимой от тока выдержкой времени при перегрузках и независимой от тока выдержкой времени при токах короткого замыкания.

Выдержка времени максимальных расцепителей с обратнозависимой от тока характеристикой создается при помощи часового механизма, а выдержка времени расцепителей с независимой характеристикой создается при помощи механического замедлителя расцепления. При максимальной уставке часового механизма и токе, равном току наименьшей уставки на шкале перегрузок выдержка времени составляет не менее 10 сек.

Проверка максимальной токовой защиты автоматов заключается в определении тока трогания и времени срабатывания при этом токе максимальных расцепителей с обратнозависимой характеристикой, тока срабатывания максимальных расцепителей с независимой выдержкой времени и выдержки времени замедлителя расцепления, а также возврата максимальных расцепителей в исходное положение при снижении тока. В соответствии с техническими условиями расцепитель должен вернуться в исходное положение без отключения автомата при снижении тока от значения, равного наименьшей уставке тока перегрузки, до 75% номинального тока расцепителя, или от значения, равного наибольшей уставке тока перегрузки, до 100% номинального тока расцепителя в обоих случаях - по истечении 2/3 выдержки времени, соответствующей данной уставке на шкале перегрузок.

Для максимальных расцепителей допускается отклонение от номинального тока срабатывания не более ±10%. Отклонение времени отключения селективных автоматов при токах короткого замыкания от уставки выдержки времени допускается на величину ±15%.

Проверка максимальных расцепителей автоматов выполняется по схеме, приведенной на рис.

Рис. Схема проверки максимальных расцепителей автоматов серии АВМ:

Р
- рубильник; AT - автотрансформатор; НТ - нагрузочной трансформатор;

ИТ- измерительный трансформатор; AD - автомат; С - секундомер.

В условиях производственного отапливаемого помещения сопротивление изоляции всех токоведущих частей автомата, соединенных между собой по отношению к корпусу, должно быть не менее 20 МОм в холодном состоянии и не менее 6 МОм - в горячем.

При наладке выдвижных автоматов необходимо проверить четкость работы механической блокировки, препятствующей разъединению и замыканию главных контактов при включенном автомате.

4.4. ТЕПЛОВЫЕ РЕЛЕ

В однофазных реле серии ТРП внутри биметаллического элемента реле, имеющего U-образную форму, расположен нихромовый нагреватель. Нагрев термоэлементов осуществляется комбинированным способом: ток проходит через нагреватель и частично через биметалл. Реле допускают регулировку тока уставки в пределах ±25%. Регулировку осуществляют с помощью механизма уставки, изменяющего натяжение ветвей термоэлемента. Механизм имеет шкалу, на которой нанесено по пять делений в обе стороны от нуля. Цена деления 5% для открытого исполнения и 5,5% - для защищенного. При температуре окружающей среды ниже +30°С вносится поправка в пределах шкалы реле: одно деление шкалы соответствует изменению температуры на 10°С. При отрицательных температурах стабильность защиты нарушается.

Деление шкалы, соответствующее току защищаемого электродвигателя и окружающей температуре, выбирают следующим образом.

Определяется деление шкалы уставок тока без температурной поправки по выражению:

MACROBUTTON MTPlaceRef * MERGEFORMAT где Iэл - номинальный ток электродвигателя;

I0 - ток нулевой уставки реле;

с - цена деления, равная 0,05 для открытых пускателей и 0,055 - для защищенных.

Затем вводится поправка на окружающую температуру:

где: tокр - температура окружающей среды.

Поправка на температуру вводятся только при понижений температуры от номинальной (+40°С) на величину более 10°С. Результирующее расчетное деление шкалы

Если N оказывается дробным числом, его следует округлить до целого в большую или меньшую сторону в зависимости от характера нагрузки.

Самовозврат реле осуществляется пружиной после остывания биметалла или вручную (ускоренный возврат) рычагом с кнопкой.

Реле серии ТРИ - двухполюсные с температурной компенсацией. Кинематическая схема реле серии ТРИ приведена на рис. 4.5. Термоэлемент 2 нагревается от нагревательного элемента 7. Компенсатор реле 4 выполнен из биметалла с обратным прогибом по отношению к основному термоэлементу. Работа реле серии ТРН почти не зависит от окружающей температуры. Изменение тока уставки реле осуществляется изменением зазора между компенсатором 4 и защелкой 9. Реле типа ТРН-10А позволяют регулировать ток уставки в пределах от - 20 до +25%; реле типов ТРН-10, ТРН-25 - в пределах от - 25 до +30%. Реле имеют только ручной возврат, осуществляемый нажатием на кнопку через 1 - 2 мин после срабатывания реле.

Рис.4.5. Кинематическая схема реле типа ТРН:

а - до срабатывания; б - после срабатывания;

1 - нагреватель; 2 - термобиметалл; 3 - держатель; 4 - термобиметаллический компенсатор; 5 - эксцентрик; 6 - упор; 7 - траверса; 8 - пружина; 9 - защелка; 10 - контактный мостик; 11 - неподвижные контакты; 12 - пружина траверсы;

13 - пружина кулисы

Защитные характеристики тепловых реле различных серий (при нагреве от холодного состояния) приведены на рис.4.6.

Согласно требованиям ГОСТов, встроенное в пускатель тепловое реле, через которое в течение длительного времени проходит номинальный ток, должно сработать не более чем через 20 мин после наступления перегрузки 20°С.

Для настройки реле под током собирают схему, приведенную на рис. 4.7. Предварительно в течение 2 ч через контакты пускателя и нагревателя тепловых реле пропускают номинальный ток (катушка пускателя находится под номинальным напряжением). Затем ток повышают до 1,2 1ном и проверяют время срабатывания реле. Если через 20 мин со времени повышения тока реле не сработает, то следует постепенным снижением уставки найти такое положение, при котором реле сработает. Затем снизить ток до номинального, дать аппарату остыть и вновь повторить опыт при токе 1,2 1ном.

Если при первоначальной проверке реле срабатывает слишком быстро, (менее чем за 10 мин), ток следует снизить до номинального, увеличить уставку и после проверки аппарата повторить опыт.

При наладке большого количества тепловых реле с одинаковой уставкойs рекомендуется пользоваться образцовыми реле, предварительно настраиваемыми описанным выше способом. Тепловые реле нескольких пускателей включают последовательно с образцовыми реле; пускатели со снятыми крышками кожухов оставляют во включенном положении. По цепи нагревателей пропускают ток, близкий 1,5 1ном и изменением уставок реле добиваются срабатывания реле одновременно с образцовыми.

Кратность тока номинальному

Рис.4.6. Защитные характеристики тепловых реле различных серий (при нагреве с холодного состояния):

1 - РТ; 2 - ТРН-10; 3 - ТРН-25; 4 - ТРН-40; 5 - ТРП-150; 6 - ТРП-600; 7 - ТРП-25; 8 - ТРН-10А;9-ТРП-60.

Рис. 4.7. Схема испытания РТ

Пускатели включают только для удобства определения момента срабатывания реле.

Присоединяя к испытательной схеме новую партию аппаратов, не следует4 ожидать, пока остынет контрольный пускатель. Достаточно предварительно прогреть все аппараты в течение 10-15 мин током, равным 1,5-1ном, а затем отключить ток на 10 мин.

5. ПРОВЕРКА РЕЛЕЙНОЙ АППАРАТУРЫ

5.1. ОБЪЁМ ИСПЫТАНИЙ

Основные положения и требования, предъявляемые к релейной защите в электроустановках, определены в ПУЭ, «Руководящих указаниях по релейной защите» и других директивных материалах.

В объем наладки устройств релейной защиты при новом включении, как правило, входят:

1)ознакомление с проектом;

2) проверка правильности и качества выполнения монтажа цепей релейной защиты и внешний осмотр аппаратуры;

3) измерение сопротивления и испытание повышенным напряжением изоляции аппаратов и проводок;;

4) проверка правильности выбора предохранителей и автоматов во вторичных цепях;

5) проверка и регулировка релейной аппаратуры и вспомогательных устройств;

6) испытание приводов выключателей, короткозамыкателей, отделителей, трансформаторов тока и напряжения;

7) проверка взаимодействия всех элементов схемы и действия защиты на выключатели (короткозамыкатели, отделители);

8) проверка защиты в целом током от постороннего источника и рабочим током (нагрузки).

При внешнем осмотре элементов защиты проверяется:

а) наличие всей релейной и вспомогательной аппаратуры, предусмотренной проектом;

б) соответствие ее проекту и требованиям ПУЭ;

в) состояние защитных кожухов и крышек, а также уплотнительных прокладок между крышками и корпусом;

г) наличие и правильность выполнения маркировки;

д) заземление металлических корпусов аппаратуры и вторичных цепей в местах, предусмотренных проектом;

е) наличие плавких вставок предохранителей и соответствие их проектным или расчетным данным;

ж) соответствие проекту и ПУЭ сечения проводок вторичной коммутации (токовых, напряжения, оперативных);

з) надежность крепления панелей, аппаратуры, реле, шпилек, штырей, ламелей, винтов и гаек, а также всех контактных соединений;

и) наличие пломб, всех необходимых надписей, а также разделительных линий на панелях между аппаратурой разных присоединений;

к) состояние кабельных разделок и др.

Подробно проверка релейной аппаратуры изложена в Методике-" «Проверка релейной аппаратуры».

6. ПРОВЕРКА ПРАВИЛЬНОСТИ ФУНКЦИОНИРОВАНИЯ ПОЛНОСТЬЮ СОБРАННЫХ СХЕМ ПРИ РАЗЛИЧНЫХ ЗНАЧЕНИЯХ ОПЕРАТИВНОГО ТОКА

6.1. ПРОВЕРКА СХЕМ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ

Проверка схем электрических соединений предусматривает следующее.

1. Ознакомление с проектными схемами коммутации как принципиальными (элементными), так и монтажными, а также кабельным журналом.

2. Проверка соответствия установленного оборудования и аппаратуры проекту.

3. Осмотр и проверка соответствия смонтированных проводов и кабелей (их марки, материала, сечения и др.) проекту и действующим правилам.

4. Проверка наличия и правильности маркировки на оконцевателях проводов и жил кабелей, клёммниках, выводах аппаратов.

5. Проверка качества монтажа (надежности контактных соединений, укладки проводов на панелях, прокладки кабелей и т. п...

6. Проверка правильности монтажа цепей (прозвонка).

7. Проверка схем электрических цепей под напряжением. Цепи первичной и вторичной коммутаций проверяют в полном объеме при приемо-сдаточных испытаниях после окончания монтажа электроустановки. При профилактических испытаниях объем проверки коммутации значительно сокращается. Обнаруженные в процессе проверки ошибки монтажа или другие отступления от проекта устраняют наладчики или монтажники (в зависимости от объема и характера работы).

Принципиальные изменения и отступления от проекта допустимы только после согласования их с проектной организацией. Все изменения должны быть показаны на чертежах.

6.2. ПРОВЕРКА ПРАВИЛЬНОСТИ МОНТАЖА (ПРОЗВОНКА)

Правильность монтажа, выполненного свободно и наглядно в пределах одной панели, шкафа, аппарата, может быть проверена визуально прослеживанием проводов. Во всех остальных случаях правильность монтажа цепей определяют прозвонкой.

В пределах одной панели, шкафа прозвонка цепей может осуществляться с помощью простейшего прозвоночного устройства (рис.6.1). Устройства такого типа легко изготовить на месте проведения наладочных работ. В прозвоночных устройствах с лампочкой заметно искрение при размыкании цепи, содержащей катушку с железным сердечником: по искрению и судят об исправности катушки (отсутствие обрывов и витковых замыканий).

Более совершенное прозвоночное устройство содержит миниатюрный магнитоэлектрический вольтметр. Если вольтметр градуирован в омах, устройство становится по существу омметром, аналогичным прибору типа М-57.

При прозвонке цепей на панели или коротких отрезков кабелей, не выходящих за пределы одного помещения, можно пользоваться также понижающим трансформатором (220/12 В) с лампой или мегаомметром.

Длинные отрезки кабеля, концы которых расположены в разных помещениях, лучше всего прозванивать с помощью двух микротелефонных трубок. Телефоны и микрофоны обеих трубок соединяют в последовательную цепочку с источником постоянного напряжения 3 - 6 В (сухие элементы или аккумуляторы) через прозваниваемую и вспомогательную жилы кабеля. В качестве обратного провода могут быть использованы металлическая оболочка кабеля либо заземленные конструкции.

Порядок прозвонки по схеме, приведенной на рис. 6.2. (с использованием оболочки кабеля в качестве обратного провода), таков.

1. С
обеих сторон отсоединяют все жилы проверяемого кабеля.

2. Проверяют изоляцию всех жил кабеля между собой и относительно земли.

3. Два наладчика, находясь на разных концах кабеля, присоединяют трубки к оболочке и находят условную первую жилу. По предварительной договоренности один из наладчиков («ведущий») присоединяет трубку к жиле, а второй («помощник») поочередно касается проводом трубки всех жил.

4. В момент прикосновения провода трубки к разыскиваемой жиле в обоих телефонах слышен характерный шорох, свидетельствующий об образовании замкнутой цепи и о возможности ведения переговоров.

5. «Ведущий» сообщает «помощнику», какая маркировка должна быть на найденной жиле; при несоответствии маркировки в нее вносят коррективы.

6. Аналогично находят следующую жилу и устанавливают телефонную., связь.

7. Ранее найденную жилу на обоих концах кабеля присоединяют к клеммникам.

8. Аналогично прозванивают все остальные жилы кабеля.

Если количество прозваниваемых жил невелико, нет микротелефонных трубок или прозвонку проводит один человек, то можно воспользоваться схемами, приведенными на рис. 6.3 - 6.5.

Жилоискатель (рис.6.5) состоит из набора сопротивлений (1-5 кОм и т.д.) и омметра, включаемых на разные концы кабеля. По значению измеренного на каждой жиле сопротивления проверяют ее маркировку.

7. Иногда прозвонку осуществляют два наладчика с помощью двух пробников (рис. 6.6). В этом случае наличие лампочек на обоих концах кабеля позволяет пользоваться условным кодом и освобождает наладчиков от хождения для переговоров друг о другом. Однако перед прозвонкой необходимо проверять полярность пробников, так как при встречном их включении, лампы гореть не будут.

Рис. 6.3. Схема прозвонки длинного кабеля пробником:

а - при поочередном заземлении жил на удаленном конце; б - при использовании металлической оболочки кабеля в качестве обратного провода; в - при использовании одной из жил в качестве обратного провода.

Рис. 6.4. Схема прозвонки длинного кабеля мегаомметром.

Рис. 6.5. Схема прозвонки длинного кабеля жилоискателем.

Рис. 6.6. Схема прозвонки двумя пробниками.

7.ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ.

Результаты испытаний оформляются протоколами, формы которых приведены в Приложении 1.

Руководитель ЭТЛ

Описание процесса измерений сопротивления изоляции

В процессе работы электроустановок изоляция подвергается воздействию окружающей среды, что неизменно сказывается на ее свойствах. Кроме того, из - за нагрева токоведущих проводов, она со временем изнашивается.

Из всего вышеперечисленного вполне очевидно, что только при регулярных измерениях параметров изоляции возможна безотказная работа электроустановок.

Основным параметром характеризующим изоляцию является - сопротивление изоляции постоянному току. Данный параметр нуждается в регулярном измерении для стабильной работы любой системы.

Кроме того, правилами эксплуатации электрооборудования определена периодичность замеров сопротивления изоляции - не менее одного раза за три года, но специалисты рекомендуют делать это чаще. Почему? Попробуем обосновать данную необходимость.

В первую очередь, регулярные измерения сопротивления изоляции обеспечивают безопасность ваших людей, они помогут предотвратить многие несчастные случаи, в том числе и в результате возгорания.

Второй немаловажный момент это, естественно, возможные убытки, к которым могут привести поломки в системе электроснабжения.

Ну и конечно, последнее, что необходимо отметить, - данные замеры помогут вам минимизировать, а то и вовсе избежать потерь электроэнергии, благодаря чему вы сэкономите изрядные средства.

Измерение сопротивления изоляции кабеля осуществляют между фазными проводниками, фазными проводниками и нейтральными, фазными проводниками и землей, нейтральными проводниками и землей. Если проверка проводится в соответствии с нормами ПТЭЭП, то кабель обязательно демонтируется. О ссылках ПТЭЭП вы можете прочитать в соответствующем разделе меню на нашем сайте.

Измерение сопротивления изоляции под напряжением

Результатом замеров сопротивления изоляции является сопротивление характеризующее ток утечки, возникающий между точками электроустановки при включении прибора под напряжение.

Такие измерения производятся специальными приборами, называемыми мегаомметрами. Это приборы предназначенные для измерения очень больших значений сопротивления, и генерирующие высокие значения напряжения (от 500 до 2500 Вольт) для возможности измерения сопротивления на участках с таким напряжением.

Параметры характеризующие сопротивление изоляции

1. Сопротивление изоляции постоянному току - Ruз.

Как правило, со временем возникают внешние дефекты, из за которых сопротивление изоляции сильно снижается. Замер сопротивления изоляции в данном случае производится так: к изоляции прилагается выпрямляющее напряжение, во время воздействия которого измеряется утечка тока проходящего через изоляцию.

Rиз = Uпр.в./Iут

В данной формуле: Rиз - сопротивление изоляции, Uпр.в. - выпрямляющее напряжение, Iут - ток утечки.

2. Коэффициент абсорбции изоляции.

Данный коэффициент идеально определяет увлажнение изоляции, он представляет собой отношение сопротивления изоляции измеренного через 60 секунд, после приложения напряжения мегаомметра, к сопротивлению изоляции измеренному через 15 секунд, после приложения. Обозначаются данные сопротивления соответственно R60 и R15.

Кабс = R60/R15

Важно знать, что при влажной изоляции коэффициент абсорбции приближен к единице, а при сухой изоляции - значительно ее превышает. Это происходит из - за того, что при сухой изоляции время заряда абсорционной емкости достаточно велико, а для влажной, соответственно - мало.

3. Коэффициент поляризации изоляции.

Коэффициент поляризации определяет степень старения изоляции. Указывает способность частиц перемещаться под действием электрического поля. Он представляет собой отношение сопротивления изоляции - измеренного через 600 секунд после приложения напряжения мегаомметра к сопротивлению измеренному через 60 секунд.

Кпол = R600/ R60.

Как правило, если коэффициент поляризации меньше единицы, то изоляция является опасной. Хорошая изоляция имеет Кпол не менее 2х, в то время как от 4х начинается идеальная изоляция.

Замер сопротивления изоляции

Опишем вкратце как происходит процесс замера. Прежде всего, необходимо убедиться, что на проверяемом оборудовании нет напряжения. После этого, проверяемое оборудование очищается от грязи и пыли, и заземляется на несколько минут - для снятия остаточных зарядов.

Далее, сопротивление изоляции будет определяться показанием стрелки прибора мегаомметра, присоединенному к измеряемому прибору проводами обладающими большим сопротивлением изоляции. По завершению измерений проверяемый объект необходимо разрядить

По окончанию всех работ составляется протокол проверки сопротивления изоляции проводов, кабелей и обмоток.

Закажите у нас данную услугу и вы сможете работать спокойно!

На заметку:

Не следует проводить замеры сопротивления изоляции, если температура менее 10°С. В следствии нестабильности влаги возможно искажение результатов измерений!


Проведение замеров сопротивления изоляции при температура менее 10°С не рекомендуется из-за нестабильности влаги и, как следствие, - искажения результатов измерений.

Настоящий документ разработан для электротехнического персонала электролабораторий, электротехнических участков промышленных объектов, проводящих работы по измерению сопротивления изоляции электрооборудования, проводов и кабелей в действующих и реконструируемых электроустановках для всех потребителей электроэнергии независимо от их ведомственной принадлежности.

2. НОРМАТИВНЫЕ ССЫЛКИ

  • Правила технической эксплуатации электроустановок потребителей 1992 г.;
  • Правила техники безопасности при эксплуатации электроустановок потребителей 1994 г.;
  • Правила устройства электроустановок 1986 г.;
  • Нормы испытания электрооборудования и аппаратов электроустановок потребителей 1982 г.;
  • Нормы испытания электрооборудования 1978 г.;
  • ГОСТ 26567-85. Преобразователи электроэнергии полупроводниковые. Методы испытаний;
  • ГОСТ 3345-76. Кабели, провода и шнуры. Метод определения электрического сопротивления изоляции;
  • ГОСТ 3484-88. Трансформаторы силовые. Методы электромагнитных испытаний;
  • ГОСТ 3484.3-83. Трансформаторы силовые. Методы измерений диэлектрических параметров изоляции.

3.ОПРЕДЕЛЕНИЯ

3.1. В настоящей методике используются термины, установленные в ГОСТ 3345-76, ГОСТ 3484.3-83, ГОСТ 3484.1-88, ГОСТ 16504, ГОСТ 23875.

Распределительное устройство - распределительное устройство генераторного напряжения электростанции или вторичного напряжения понизительной подстанции района (предприятия), к которому присоединены сети района (предприятия).

Обозначения и сокращения:

  • ВН - обмотки высшего напряжения;
  • СН - обмотки среднего напряжения;
  • НН - обмотки низкого напряжения;
  • НН1, НН2 - обмотки низшего напряжения трансформаторов с расщепленной обмоткой;
  • R15 - пятнадцатисекундное значение сопротивление изоляции в МОм;
  • R60 - одноминутное значение сопротивление изоляции в МОм;
  • ПЭЭП - правила эксплуатации электроустановок потребителей;
  • ПТБЭЭП - правила техники безопасности при эксплуатации электроустановок потребителей;
  • ПУЭ - Правила устройства электроустановок.

4. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

4.1 Измеряемые показатели

Сопротивление изоляции измеряют мегомметрами (100-2500В) со значениями измеренных показателей в Ом, кОм и МОм.

4.2 Средства измерений

К средствам измерения изоляции относятся мегомметры: ЭСО 202, Ф4100, М4100/1-М4100/5, М4107/1, М4107/2, Ф4101. Ф4102/1, Ф4102/2, BM200/G и другие, выпускаемые отечественными и зарубежными фирмами.

4.3 Требования к квалификации

К выполнению измерений сопротивления изоляции допускается обученный электротехнический персонал, имеющий удостоверение о проверке знаний и квалификационную группу по электробезопасности не ниже 3-й, при выполнении измерений в установках до 1000 В, и не ниже 4-й, при измерении в установках выше 1000 В.

К обработке результатов измерений могут быть допущены лица из электротехнического персонала со средним или высшим специальным образованием.

Анализ результатов измерений должен проводить персонал, занимающийся вопросами изоляции электрооборудования, кабелей и проводов.

5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

  1. При выполнении измерений сопротивления изоляции должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019.80, ГОСТ 12.2.007-75, Правилами эксплуатации электроустановок потребителей и Правилами техники безопасности при эксплуатации электроустановок потребителей.
  2. Помещения, используемые для измерения изоляции, должны удовлетворять требованиям взрыво- и пожарной безопасности по ГОСТ 12.01.004-91.
  3. Средства измерений должны удовлетворять требованиям безопасности по ГОСТ 2226182.
  4. Измерения мегомметром разрешается выполнять обученным лицам из электротехнического персонала. В установках напряжением выше 1000 В измерения производят по наряду два лица, одно из которых должно иметь по электробезопасности не ниже IV группы. Проведение измерений в процессе монтажа или ремонта оговаривается в наряде в строке "Поручается". В установках напряжением до 1000 В измерения выполняют по распоряжению два лица, одно из которых должно иметь группу не ниже III. Исключение составляют испытания, указанные в п. БЗ.7.20.
  5. Измерение изоляции линии, могущей получить напряжение с двух сторон, разрешается проводить только в том случае, если от ответственного лица электроустановки, которая присоединена к другому концу этой линии, получено сообщение по телефону, с нарочным и т.п. (с обратной проверкой) о том, что линейные разъединители и выключатель отключены и вывешен плакат "Не включать. Работают люди".
  6. Перед началом испытаний необходимо убедиться в отсутствии людей, работающих на той части электроустановки, к которой присоединен испытательный прибор, запретить находящимся вблизи него лицам прикасаться к токоведущим частям и, если нужно, выставить охрану.
  7. Для контроля состояния изоляции электрических машин в соответствии с методическими указаниями или программами измерения мегомметром на остановленной или вращающейся, но не возбужденной машине, могут проводиться оперативным персоналом или, по его распоряжению, в порядке текущей эксплуатации работниками электролаборатории. Под наблюдением оперативного персонала эти измерения могут выполняться и ремонтным персоналом. Испытания изоляции роторов, якорей и цепей возбуждения может проводить одно лицо с группой по электробезопасности не ниже III, испытания изоляции статора — не менее чем два лица, одно из которых должно иметь группу не ниже IV, а второе — не ниже III.
  8. При работе с мегомметром прикасаться к токоведущим частям, к которым он присоединен, запрещается. После окончания работы необходимо снять остаточный заряд с проверяемого оборудования посредством его кратковременного заземления. Лицо, производящее снятие остаточного заряда, должно пользоваться диэлектрическими перчатками и стоять на изолированном основании.
  9. Производство измерений мегомметром запрещается: на одной цепи двухцепных линий напряжением выше 1000 В, в то время когда другая цепь находится под напряжением; на одноцепной линии, если она идет параллельно с работающей линией напряжением выше 1000 В; во время грозы или при ее приближении.
  10. Измерение сопротивления изоляции мегомметром осуществляется на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегомметра. При снятии заземления необходимо пользоваться диэлектрическими перчатками.

6. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

  1. Измерения изоляции должны проводиться в нормальных климатических условиях по ГОСТ 15150-85 и при нормальном режиме питающей сети или оговоренных в заводском паспорте - техническом описании на мегомметры.
  2. Значение электрического сопротивления изоляции соединительных проводов измерительной схемы должно превышать не менее чем в 20 раз минимально допускаемое значение электрического сопротивления изоляции испытуемого изделия.
  3. Измерение проводят в помещениях при температуре 25±10 °С и относительной влажности воздуха не более 80%, если в стандартах или технических условиях на кабели, провода, шнуры и оборудование не предусмотрены другие условия.

7. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

  1. Проверяют климатические условия в месте измерения сопротивления изоляции с измерением температуры и влажности и соответствие помещения по взрыво- пожароопасности для подбора, к соответствующим условиям, мегомметра.
  2. Проверяют по внешнему осмотру состояние выбираемого мегомметра, соединительных проводников, работоспособность мегаомметра согласно техническому описанию на мегомметр.
  3. Проверяют срок действия госповерки на мегомметр.
  4. Подготовку измерений образцов кабелей и проводов выполняют согласно ГОСТ 3345-76.
  5. При выполнении периодических профилактических работ в электроустановках, а также при выполнении работ на реконструируемых объектах в электроустановках подготовку рабочего места выполняет электротехнический персонал предприятия, где выполняется работа согласно правилам ПТБЭЭП и ПЭЭП.

8. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

Отсчет значений электрического сопротивления изоляции при измерении проводят по истечении 1 мин с момента приложения измерительного напряжения к образцу, но не более чем через 5 мин, если в стандартах или технических условиях на конкретные кабельные изделия или на другое измеряемое оборудование не предусмотрены другие требования.

Перед повторным измерением все металлические элементы кабельного изделия должны быть заземлены не менее чем за 2 мин.

Электрическое сопротивление изоляции отдельных жил одножильных кабелей, проводов и шнуров должно быть измерено:

  • для изделий без металлической оболочки, экрана и брони - между токопроводящей жилой и металлическим стержнем или между жилой и заземлением;
  • для изделий с металлической оболочкой, экраном и броней - между токопроводящей жилой и металлической оболочкой или экраном, или броней.

Электрическое сопротивление изоляции многожильных кабелей, проводов и шнуров должно быть измерено:

  • для изделий без металлической оболочки, экрана и брони - между каждой токопроводящей жилой и остальными жилами, соединенными между собой или между каждой токопроводящей; жилой и остальными жилами, соединенными между собой и заземлением;
  • для изделий с металлической оболочкой, экраном и броней - между каждой токопроводящей жилой и остальными жилами, соединенными между собой и с металлической оболочкой или экраном, или броней.

При пониженном сопротивлении изоляции кабелей проводов и шнуров, отличной от нормативных правил ПУЭ, ПЭЭП, ГОСТ, необходимо выполнить повторные измерения с отсоединением кабелей, проводов и шнуров от зажимов потребителей и разведением токоведущих жил.

При измерении сопротивления изоляции отдельных образцов кабелей, проводов и шнуров, они должны быть отобраны на строительные длины, намотанные на барабаны или в бухты, или образцы длиной не менее 10 м, исключая длину концевых разделок, если в стандартах или технических условиях на кабели, провода и шнуры не оговорена другая длина. Число строительных длин и образцов для измерения должно быть указано в стандартах или технических условиях на кабели, провода и шнуры.

9. ИЗМЕРЕНИЕ ИЗОЛЯЦИИ ПРЕОБРАЗОВАТЕЛЕЙ

9.1. Измерение электрического сопротивления, изоляции преобразователей проводят в соответствии с требованиями настоящего стандарта, а при воздействии климатических факторов измерение сопротивления изоляции проводят с учетом ГОСТ/16962-71.

Средства измерений : мегомметры и омметры по ГОСТ 16862-71.

Измерение электрического сопротивления изоляции проводят:

  • в нормальных климатических условиях; при верхнем значении температуры окружающей среды после установления в преобразователе теплового равновесия;
  • при верхнем значении относительной влажности.

Сопротивление изоляции измеряют между электрически не соединенными между собой цепями, электрическими цепями и корпусом. В ТУ или конструкторской документации на преобразователи конкретных серий и типов указывают выводы, между которыми должно быть измерено сопротивление и значение постоянного напряжения, при котором проводится это измерение. Если один из выводов или элементов по схеме соединен с корпусом, то эта цепь на время испытаний должна быть разъединена.
При измерении сопротивления изоляции преобразователей должны выполняться следующие условия:

Таблица 1.

  • перед испытаниями преобразователь должен быть отсоединен от внешних питающих сетей и нагрузки;
  • входные (выходные) выводы преобразователя, конденсаторы, связанные с силовыми цепями, а также анодные, катодные и выводы управления силовых полупроводниковых приборов должны быть соединены между собой или зашунтированы;
  • контакты коммутационной аппаратуры силовых цепей должны быть замкнуты или зашунтированы;
  • электрические цепи, содержащие полупроводниковые приборы и микросхемы, необходимо отключить и, при необходимости, подвергнуть испытаниям отдельно;
  • напряжение измерительного прибора при измерении сопротивления изоляции в зависимости от номинального (амплитудного) значения напряжения цепи выбирают по табл. 1.

При необходимости сопротивление изоляции измеряют при более высоких напряжениях, но не превышающих испытательное напряжение цепи.

Измерение сопротивления изоляции преобразователей, состоящих из нескольких шкафов, допускается проводить отдельно по каждому шкафу.

Если измеряют сопротивление изоляции каждого шкафа и (или) конструктивного узла преобразователя, то значение сопротивления изоляции каждого шкафа и (или) конструктивного узла должно быть указано в ТУ на преобразователи конкретных серий и типов.

Величины минимально-допустимых сопротивлений изоляции для силовых кабелей, выключателей, выключателей нагрузки, разъединителей, вентильных разрядников, сухих реакторов, измерительных трансформаторов, КРУ 6-10 кВ внутренней установки, электродвигателей переменного тока, стационарных, передвижных и комплектных испытательных устройств приведены в табл. 2.

10. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

10.1. Если измерение для кабельных изделий проводилось при температуре, отличающейся от 20 °С, а требуемое стандартами или техническими условиями на конкретные кабельные изделия, значение электрического сопротивления изоляции нормировано при температуре 20 °С, то измеренное значение электрического сопротивления изоляции пересчитывают на температуру 20°С по формуле:

где R20 - электрическое сопротивление изоляции при температуре 20 °С, МОм;
Rt - электрическое сопротивление изоляции при температуре измерения, МОм;
К - коэффициент для приведения электрического сопротивления изоляции к температуре 20 °С, значения которого приведены в приложении к настоящему стандарту.

При отсутствии переводных коэффициентов арбитражным методом является измерение электрического сопротивления изоляции при температуре (20±1)°С.

10.2. Пересчет электрического сопротивления изоляции R на длину 1 км должен быть проведен по формуле:

R=R20L,
где R20 - электрическое сопротивление изоляции при температуре 20 °С, МОм;
L - длина испытуемого изделия без учета концевых участков, км.

Коэффициент К приведения электрического сопротивления изоляции к температуре 20 °С.

Погрешность величины сопротивления изоляции подсчитывают по рекомендациям, указанным в технических описаниях и инструкциях по эксплуатации на мегомметры с учетом внешних влияющих факторов.

11. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Результаты измерений вносятся в протоколы испытания кабелей до и свыше 1000 В, а также в протоколы по профилактическим наладочным работам по устройствам РЗА и электрооборудования.

Таблица 2.


Наименование измерений сопротивления изоляций
Нормируемое значение, Мом, не менее Напряжения мегомметра, В Указания
Кабели силовые выше 1000 В Не нормируется 2500 При испытании повышенным напряжением сопротивление изоляции R60 должно быть одинаковым до и после испытаний
Кабели силовые до 1000В 1 1000
Масляные выключатели:
1. Подвижных и направляющих
частей выполненных из органического материала. 3-10кВ, 300 2500
15-150кВ 1000
220кВ 3000
2. Вторичных цепей, в том числе
включающих и отключающих катушек.
1 1000
З.Выключатели нагрузки: измерение сопротивления изоляции включающей и отключающей катушек 1 500-1000 Сопротивление изоляции силовой части не измеряется, а испытывается повышенным напряжением промышленной частоты
4. Разъединители, короткозамыкатели и отделители: Производится только при положительных температурах окружающего воздуха
1 .Поводков тяг, выполненным
из органических материалов
3-10кВ 300 2500
15-150кВ 1000 2500
220кВ 3000 2500
Измерение сопротивления элемента
вентильного разрядника на напряжение:
Сопротивление разрядника или
его элемента должно
отличаться не более чем на
30% от результатов измерения
выше 3 кВ и выше 2500
менее 3 кВ 1000 на заводе-изготовителе или предыдущих измерений при эксплуатации
Сухие реакторы. Измерение сопротивления обмоток относительно
болтов крепления
0,5 1000-500 После капитального ремонта.
0,1 1000-500 В эксплуатации
Измерительные трансформаторы
напряжения выше 1000В:
Не нормируется. 2 500 При оценке состояния вторичных обмоток можно ориентироваться на следующие средние значения сопротивления исправной обмотки: у встроенных ТТ - 10 МОм,
у выносных ТТ- 50 МОм
первичных обмоток,
вторичных обмоток
Не ниже 1 вместе с под- соединенными
цепями
1000
КРУ 3-10кВ: первичны е цепи
вторичны е цепи
300 2 500 Измерение выполняется при
полностью собранных цепях
1 500-1000 В
Э лектродвигатели переменного
тока вы ше 660 В
Не Должны учитываться при необходимости сушки.
нормируется 2500
обм. статора. до 660 В 1 1000
Обмотки статора у эл. двигателей
на напряжение вы ше 3000 В
или мощность более 3000 кВТ
R60/R15 2500 Производится у синхронны х
двигателей и асинхронных двигателей с фазным ротором напряжением 3000 В и выше или
мощностью выше 1000 кВт
Не нормиру- 1000В
Обмотки ротора ется
Стационарные, передвижные, переносные комплектные испытательные установки. Не нормируется 2500
Измерение изоляции цепей и
аппаратуры напр. выше 1000В.
Цепей и аппаратуры на напряжение
до 1000 В
1 1000
Машины постоянного тока: Сопротивление изоляции обмоток
измерение изоляции обмоток и бандажей до 500В, 0,5 500 измеряется относительно корпуса, а бандажей - относительно корпуса и
выше 500В 1 000 удерживаемых им обмоток вместе с соединенными с ними цепями и кабелями
Силовые и осветительные электропроводки 0,5 1000
Распределительные устройства,
щиты и токопроводы
0,5 1000
Вторичны е цепи управления,
защиты и автоматики
Шинки постоянного тока
1 500-1000
10 500-1000
Каждое присоединение вторичных
цепей и цепей питания приводов
выключателей
1 500-1000
Цепи управления, защиты, автоматики, телемеханики, возбуждения
машин пост. тока на напряжение
500-1000В, присоединенным к цепям главных РУ
1 500-1000 Сопротивление изоляции цепей
напряжением до 60 В, нормаль
но питающихся от отдельных
источников, измеряется мегом-
метром на 500 В и должно быть не менее 0,5 МОм
Цепи, содержащие устройства с
микроэлектронными элементами:
выше 60 В 0,5 500
60 и ниже 0,5 100


Похожие публикации